Complete

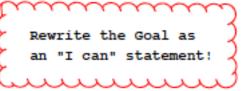
Save this packet so you can use it on the Final Exam!

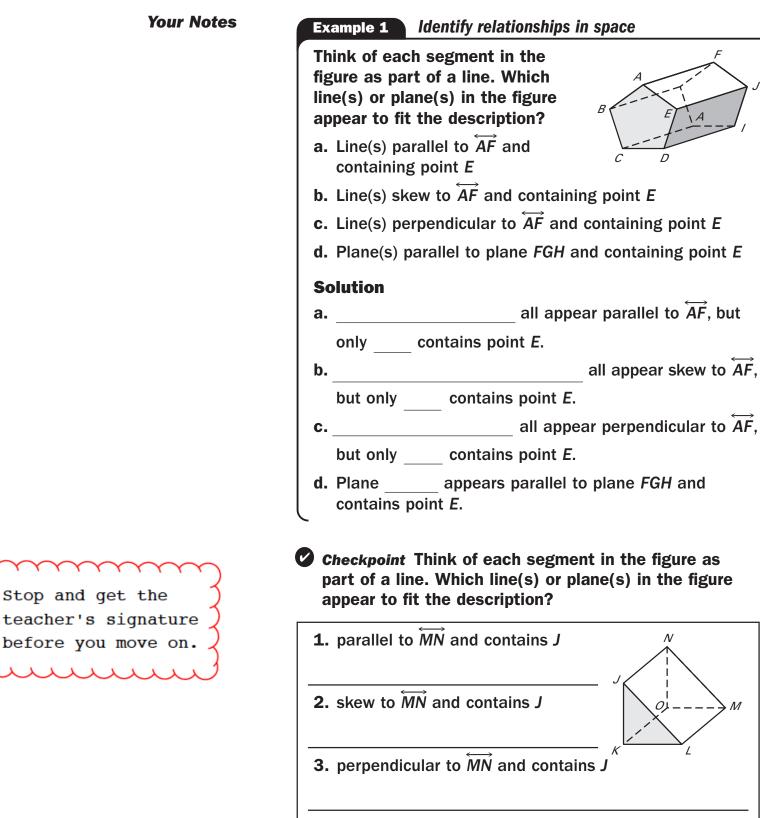
Identify Pairs of Lines and Angles

Goal • Identify angle pairs formed by three intersecting lines.

the vocab. with VOCABULARY definitions or pictures **Parallel lines** that make sense to you. **Skew lines Parallel planes Transversal Corresponding angles** Alternate interior angles Alternate exterior angles **Consecutive interior angles**

Your Notes





4. Name the plane that contains *J* and appears to be parallel to plane *MNO*.

POSTULATE 13 PARALLEL POSTULATE

If there is a line and a point not on the line, then there is ______ line through the point parallel to the given line.

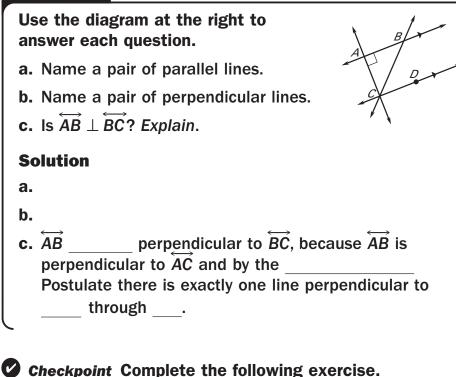
There is exactly one line through *P* parallel to ℓ .

POSTULATE 14 PERPENDICULAR POSTULATE

If there is a line and a point not on the line, then there is ______ line through the point perpendicular to the given line.

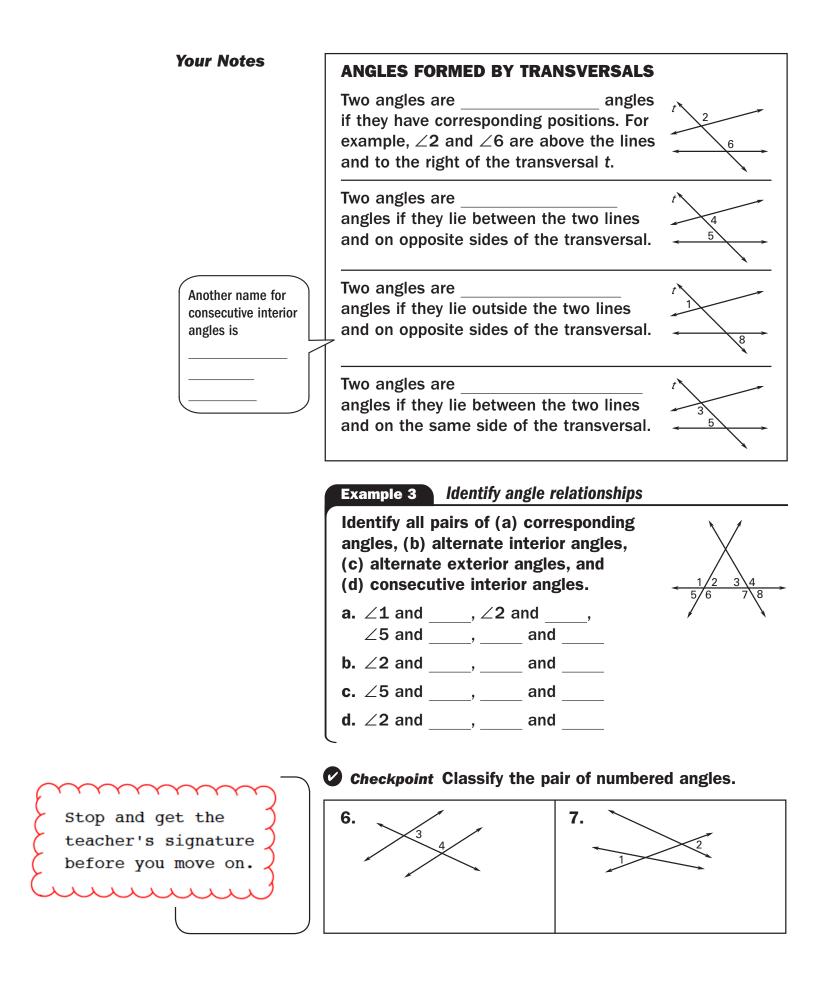
There is exactly one line through P perpendicular to ℓ .

Example 2 Identify parallel and perpendicular lines



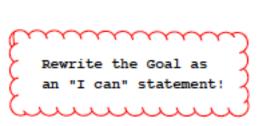
5. In Example 2, can you use the Perpendicular Postulate to show that $\overrightarrow{AC} \perp \overrightarrow{CD}$? Explain.

Stop and get the teacher's signature before you move on.



Use Parallel Lines and Transversals

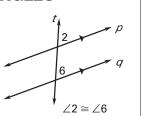
Goal • Use angles formed by parallel lines and transversals.



Your Notes

POSTULATE 15 CORRESPONDING ANGLES POSTULATE

If two parallel lines are cut by a transversal, then the pairs of corresponding angles are



125

Identify congruent angles Example 1

The measure of three of the numbered angles is 125°. Identify the angles. Explain your reasoning.

Solution

By the Corresponding Angles Postulate, = 125°.

Using the Vertical Angles Congruence Theorem, = 125°.

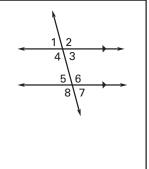
Because $\angle 1$ and $\angle 5$ are corresponding angles, by the , you know

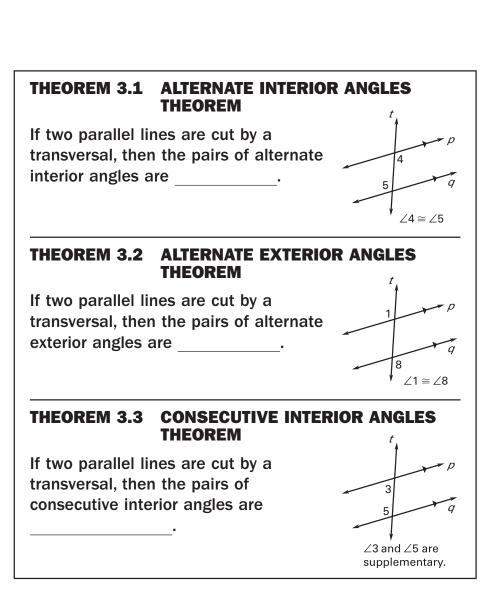
= 125°. that

Checkpoint Complete the following exercise using the diagram shown.

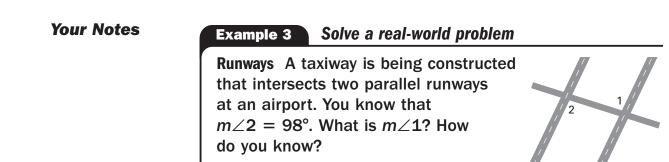
Stop and get the teacher's signature before you move on.

1. If $m \angle 7 = 75^\circ$, find $m \angle 1$, $m \angle 3$, and $m \angle 5$. Tell which postulate or theorem you use in each case.





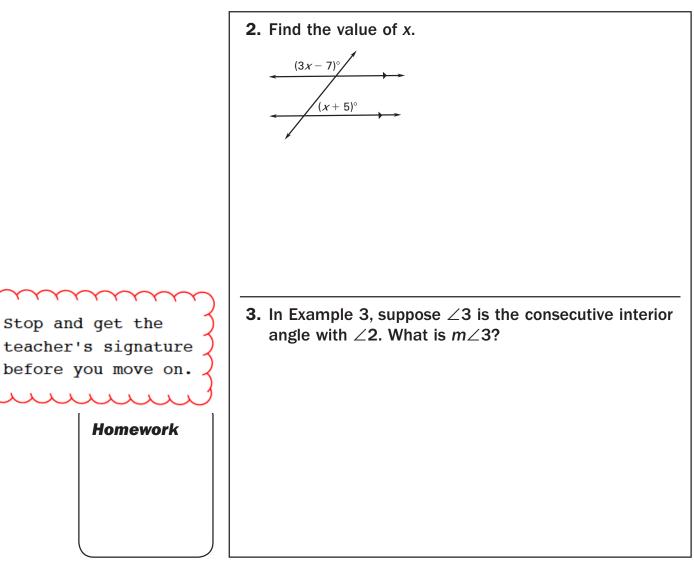
Example 2 Use properties of parallel lines	
Find the value of <i>x</i> .	$\frac{113^{\circ}}{(3x-4)^{\circ}}$
Solution	, ,
Lines <i>r</i> and <i>s</i> are about parallel lines.	, so you can use the theorems
= $(3x - 4)^{\circ}$	
= 3 <i>x</i>	Add to each side.
= <i>x</i>	Divide each side by
The value of <i>x</i> is	



Solution

Because the runways are parallel, $\angle 1$ and $\angle 2$ are		
By the Alternate Interior		
Angles Theorem, $\angle 1 \cong$ By the definition of		
congruent angles, $m \angle 1 = ___ = __$.		

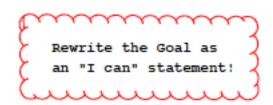
Checkpoint Complete the following exercises.



Goal • Use angle relationships to prove that lines are parallel.

Complete the vocab. with definitions or pictures that make sense to you.

Your Notes



Paragraph proof

POSTULATE 16 CORRESPONDING ANGLES CONVERSE

If two lines are cut by a transversal so the corresponding angles are congruent, then the lines are

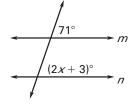
j ∥ *k*

Example 1 Apply the Corresponding Angles Converse

Find the value of x that makes $m \mid n$.

Solution

Lines *m* and *n* are parallel if the marked corresponding angles are congruent.



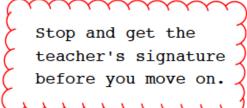
 $(2x + 3)^{\circ} =$ Use Postulate 16 to write an equation.

2x = Subtract from each side.

x = Divide each side by .

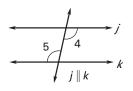
The lines *m* and *n* are parallel when x =.

Checkpoint Find the value of x that makes $a \parallel b$.



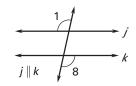
THEOREM 3.4 ALTERNATE INTERIOR ANGLES CONVERSE

If two lines are cut by a transversal so the alternate interior angles are congruent, then the lines are



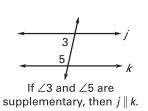
THEOREM 3.5 ALTERNATE EXTERIOR ANGLES CONVERSE

If two lines are cut by a transversal so the alternate exterior angles are congruent, then the lines are



THEOREM 3.6 CONSECUTIVE INTERIOR ANGLES CONVERSE

If two lines are cut by a transversal so the consecutive interior angles are supplementary, then the lines are



Example 2 Solve a real-world problem

Flags How can you tell whether the sides of the flag of Nepal are parallel?

Solution

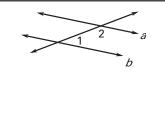
Because the

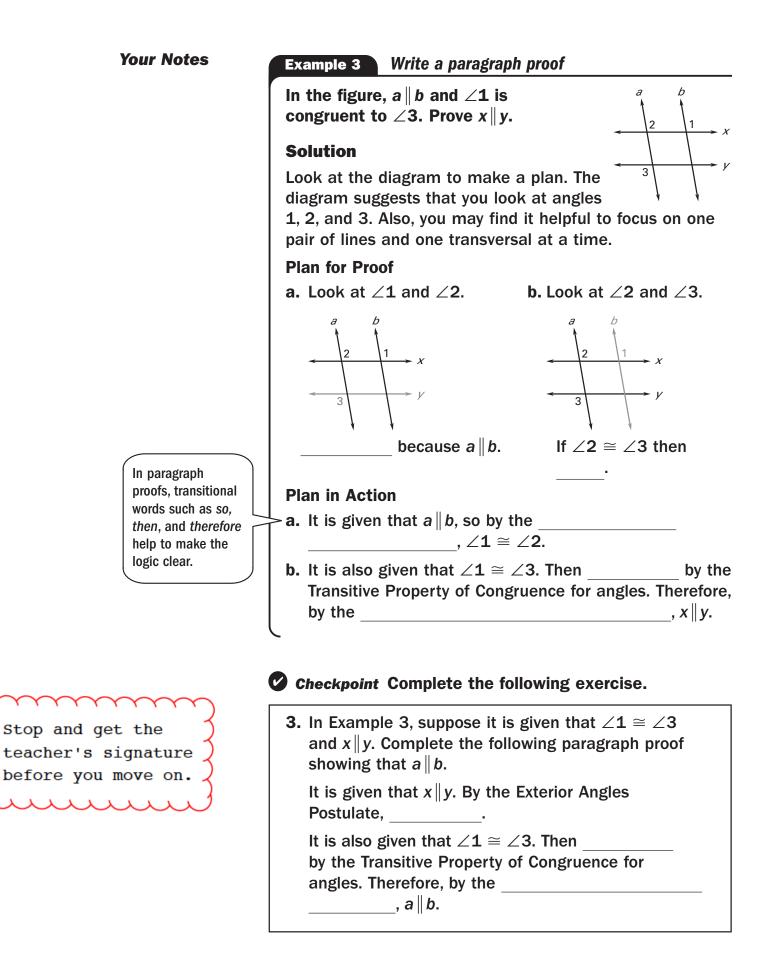
are congruent, you know that the sides of the flag are _____.

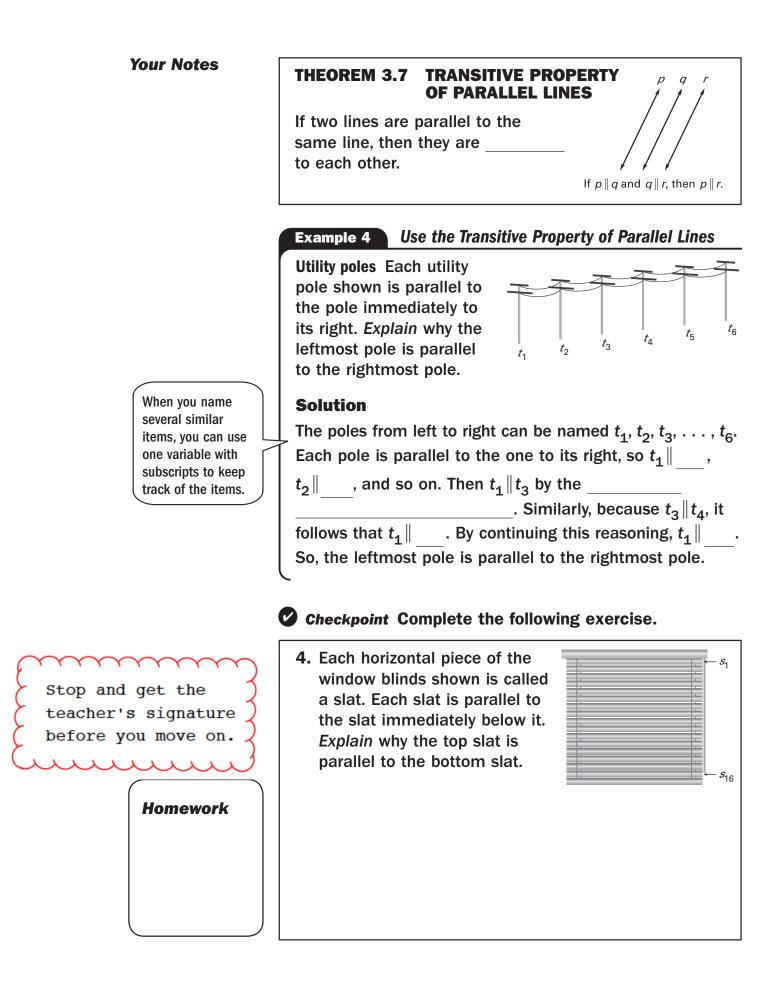
Checkpoint Can you prove that lines a and b are parallel? Explain why or why not.

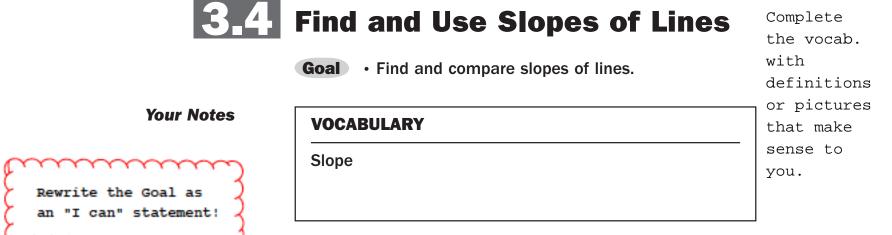
Stop and get the teacher's signature before you move on.

2. $m \angle 1 + m \angle 2 = 180^{\circ}$

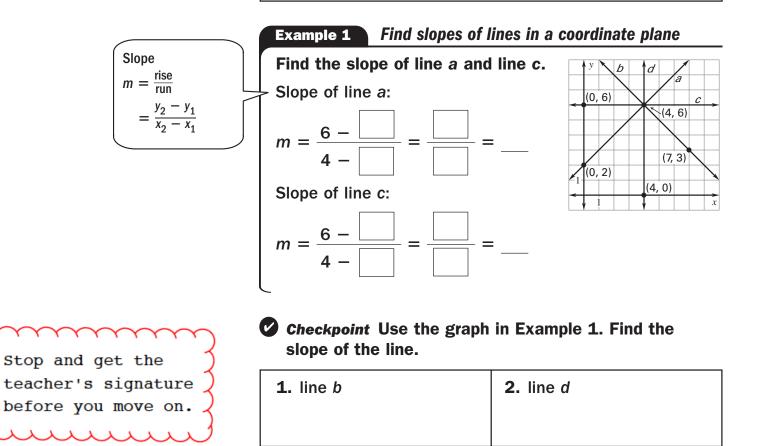


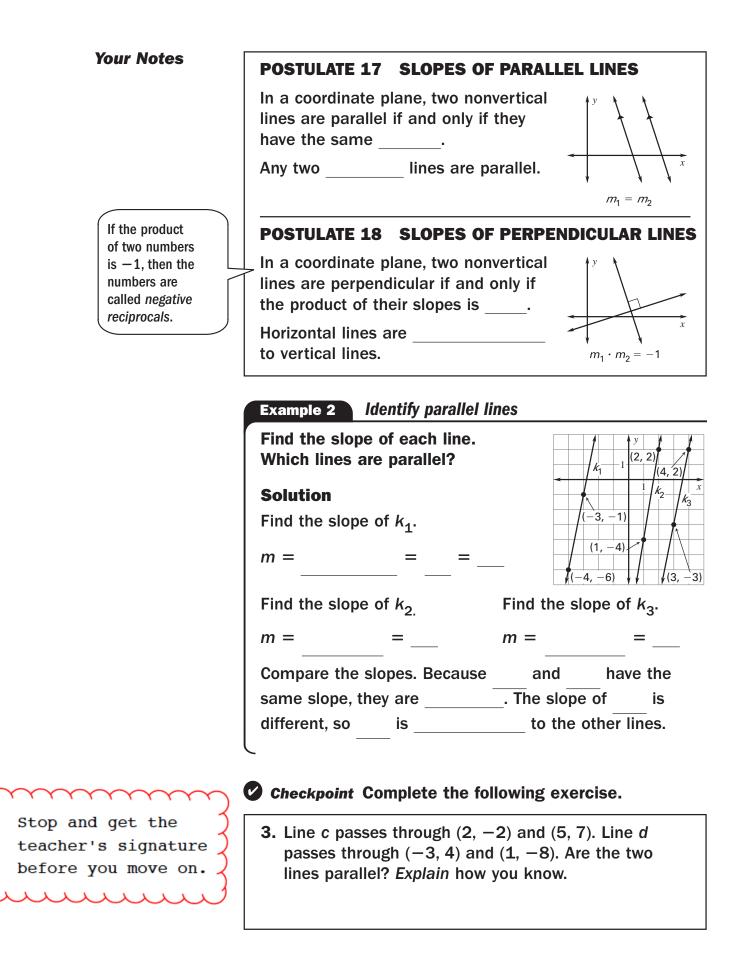


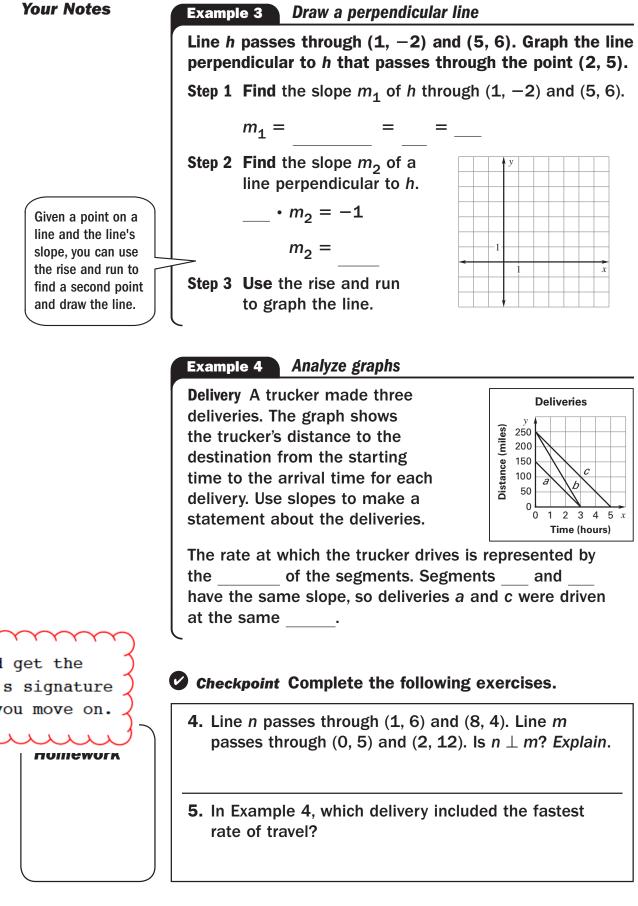




SLOPE OF LINES IN THE COORDINATE PLANE Negative slope: ______ from left to right, as in line j Positive slope: ______ from left to right, as in line k Undefined slope: ______, as in line n Zero slope (slope of 0): ______, as in line ℓ



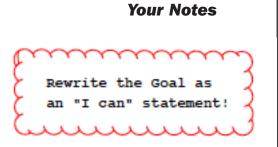




Stop and get the teacher's signature before you move on.

B Write and Graph Equations of Lines

Goal • Find equations of lines.



VOCABULARY

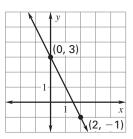
Slope-intercept form

Standard form

Complete the vocab. with definitions or pictures that make sense to you.

Example 1 Write an equation of a line from a graph

Write an equation of the line in slope-intercept form.



Solution

Step 1 Find the slope. Choose two points on the graph of the line, (0, 3) and (2, -1).

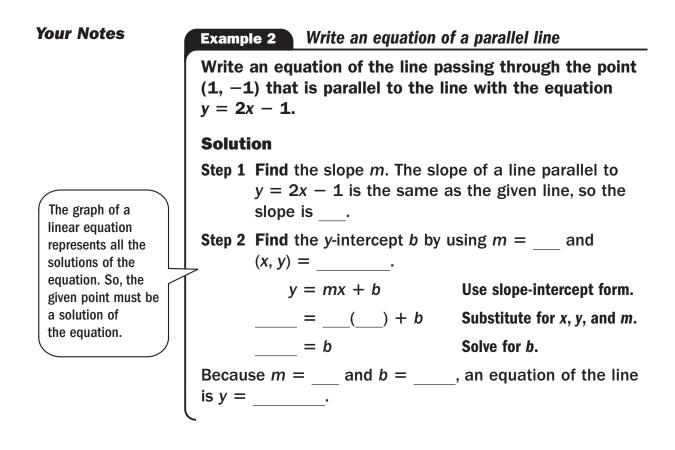
m = = = ____

Step 2 Find the *y*-intercept. The line intersects the *y*-axis at the point , so the *y*-intercept is .

Step 3 Write the equation.

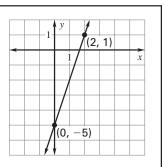
y = mx + b Use slope-intercept form. Substitute _____ for *m* and _____ *y* = _____

for b.



Checkpoint Complete the following exercises.

1. Write an equation of the line in the graph at the right.

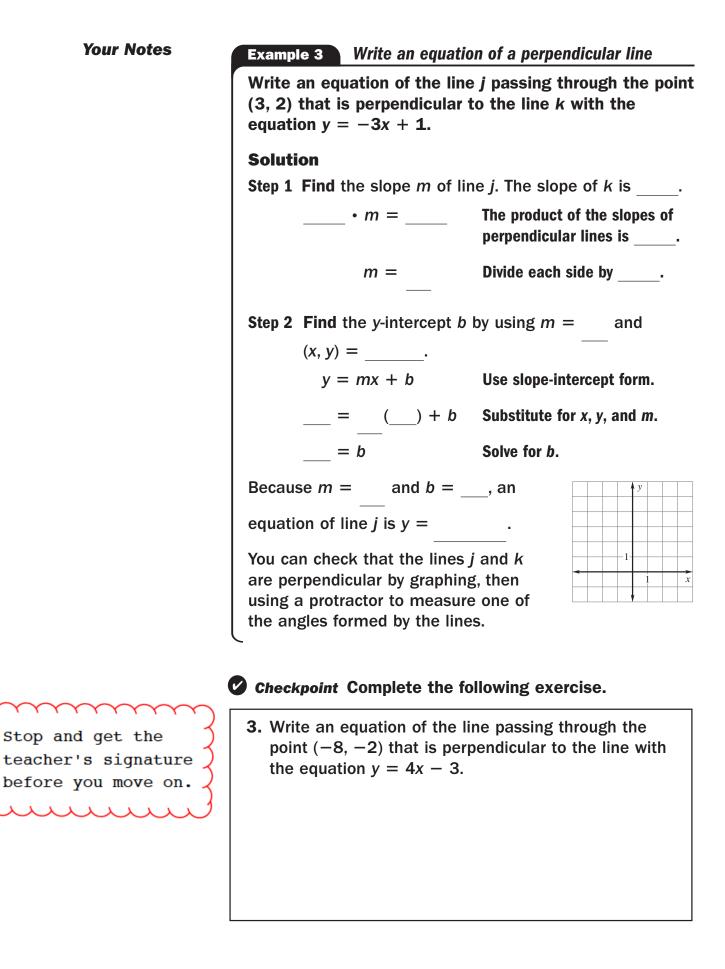


2. Write an equation of the line that passes through the point (-2, 5) and is parallel to the line with the equation y = -2x + 3.

Stop and get the

teacher's signature

before you move on.



Rent The graph models the total cost of renting an apartment. Write an equation of the line. *Explain* the meaning of the slope and the *y*-intercept of the line.

Step 1 Find the slope.

m = ____

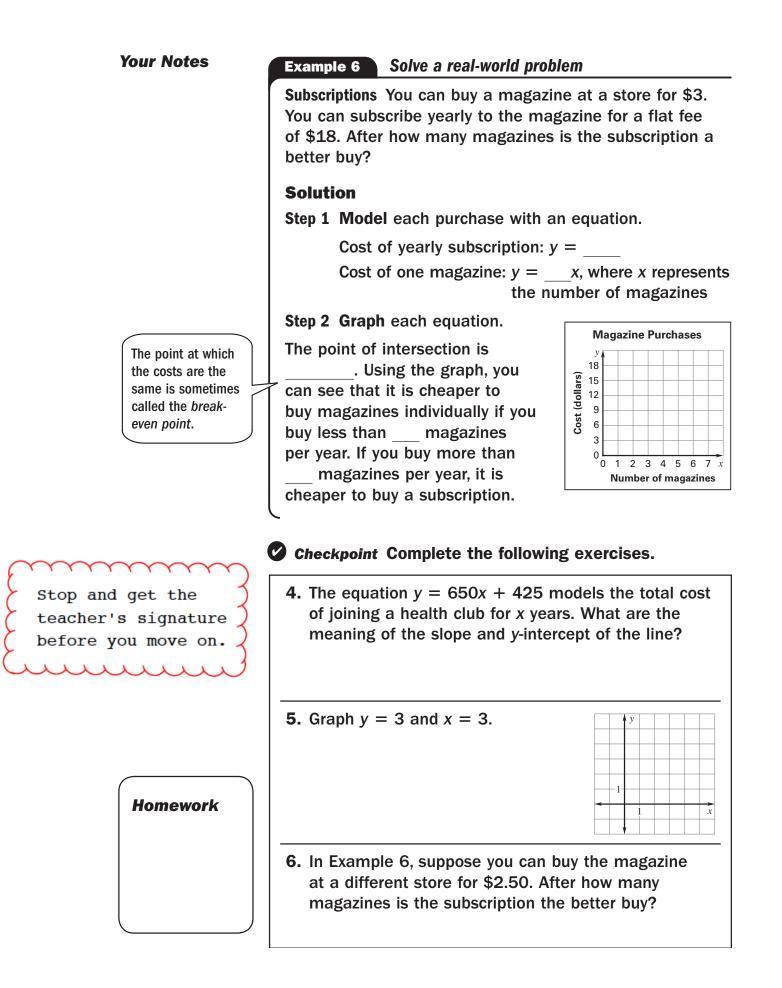
=

Step 2 Find the *y*-intercept. Use a point on the graph.

=

int on the graph.
Use slope-intercept form.
Substitute.
Simplify.
<i>m</i> = and =
odels the cost. The
e is t.

Example 5 Graph a line with equation in standard form		
Graph $2x + 3y = 6$.		
The equation is in standard form, so use the		
Step 1 Find the intercepts.		
To find the <i>x</i> -intercept, let $y = $	To find the <i>y</i> -intercept, let $x = $	
2x + 3y = 6	2x + 3y = 6	
$2x + 3(_) = 6$	$2(_) + 3y = 6$	
x =	y =	
Step 2 Graph the line.		
The intercepts are and Graph these points, then draw a line through the points.		



3.6 Prove Theorems About Perpendicular Lines

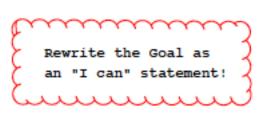
Goal • Find the distance between a point and a line.

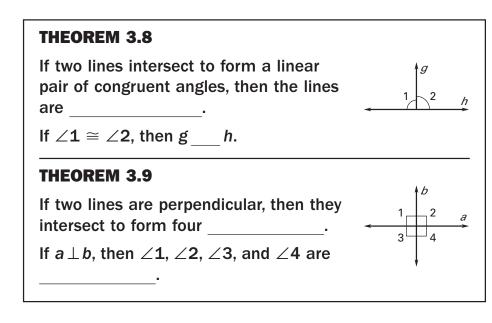
Your Notes

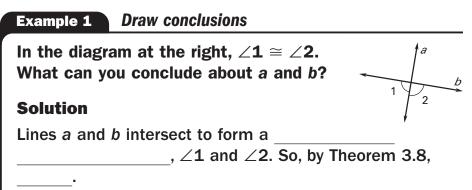
VOCABULARY

Distance from a point to a line

Complete the vocab. with definitions or pictures that make sense to you.

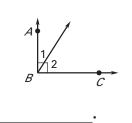






THEOREM 3.10

If two sides of two adjacent acute angles are perpendicular, then the angles are _____.

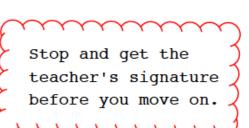


If $BA \perp BC$, then $\angle 1$	and $\angle 2$	are
------------------	-------------------	----------------	-----

Example 2 Write a proof	
In the diagram at the right, $\angle 1 \cong \angle 2$. Prove that $\angle 3$ and $\angle 4$ are complementary.	
Given $\angle 1 \cong \angle 2$	
Prove $\angle 3$ and $\angle 4$ are complementary.	
Statements	Reasons
1 . ∠1 ≅ ∠2	1
2	2. Theorem 3.8
3. \angle 3 and \angle 4 are complementary.	3

Checkpoint Complete the following exercises.

 1. If c⊥d, what do you know abou sum of the measures of ∠3 and <i>Explain</i>. 	
2. Using the diagram in Example 2 following proof that $\angle QPS$ and	
Statements	Reasons
1. ∠1 ≅ ∠2	1
2. $\overrightarrow{PS} \perp \overrightarrow{PQ}$	2
 ∠<i>QPS</i> and ∠1 are right angles. 	3



Your Notes

THEOREM 3.11 PERPENDICULAR TRANSVERSAL THEOREM

If a transversal is perpendicular to one of two parallel lines, then it is ______ to the other.

If $h \parallel k$ and $j \perp h$, then j = k.

THEOREM 3.12 LINES PERPENDICULAR TO A TRANSVERSAL THEOREM

In a plane, if two lines are perpendicular to the same line, then they are ______ to each other.

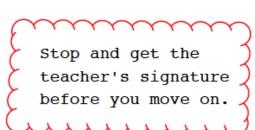
If $m \perp p$ and $n \perp p$, then m = n.

Example 3 Draw conclusions

Determine which lines, if any, must be parallel in the diagram. *Explain* your reasoning. Solution Lines *r* and *s* are both perpendicular to ____, so by Theorem 3.12, _____. Similarly, lines *x* and *y* are both perpendicular to *r*, so _____. Also, lines ____and ____are both perpendicular to *s*, so _____. Finally, because *y* and *z* are both parallel to ____, you know that ______by the Transitive Property of Parallel Lines.

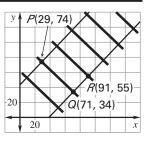
Checkpoint Use the diagram to complete the following exercises.

3. Is c d? Explain.	
4. Is $b \perp d$? Explain.	



Your Notes Example 4 Find the distance between two parallel lines

Railroads The section of broad gauge railroad track at the right are drawn on a graph where units are measured in inches. What is the width of the track?

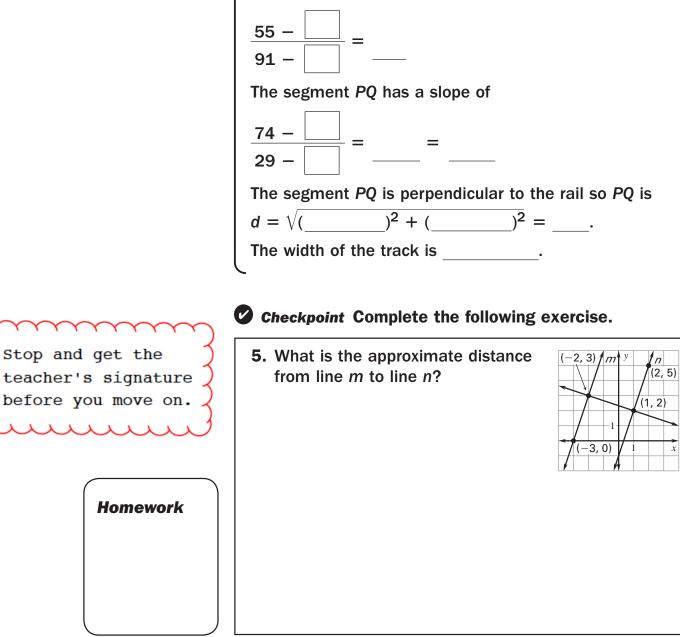


n

Solution

You need to find the length of a perpendicular segment from one side of the track to the other.

Using Q(71, 34) and R(91, 55), the slope of each rail is



82 Lesson 3.6 • Geometry Notetaking Guide