4.1. Apply Triangle Sum Properties

(

Your Notes

Example 1 Classify triangles by sides and by angles
Shuffleboard Classify the triangular shape of the shuffleboard scoring area in the diagram by its sides and by measuring its angles.

Solution

The triangle has a pair of congruent sides, so it is \qquad . By measuring, the angles are about . It is an triangle.

\checkmark Checkpoint Complete the folowing exercise.

When you draw an isosceles right triangle, the right angle has to be between the 2 congruent sides.

1. Draw an isosceles right triangle and an obtuse scalene triangle.

Example 2 Classify a triangle in a coordinate plane

Classify $\triangle R S T$ by its sides. Then determine if the triangle is a right triangle.

Solution

Step 1 Use the distance formula $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ to find the side lengths.

Step 2 Check for right angles. The slope of $\overline{R T}$ is
$=\quad$. The slope of $\overline{S T}$ is
$=\quad$. The product of the slopes is
\qquad , so $\overline{R T} \perp \overline{S T}$ and $\angle R T S$ is a \qquad angle.
Therefore, $\triangle R S T$ is a \qquad triangle.

Your Notes

THEOREM 4.1: TRIANGLE SUM THEOREM

The sum of the measures of the interior angles of a triangle is \qquad .

$$
m \angle A+m \angle B+m \angle C=
$$

\qquad

THEOREM 4.2: EXTERIOR ANGLE THEOREM

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two

$$
m \angle 1=m \angle \ldots+m \angle
$$

angles.

Example 3 Find angle measure

Use the diagram at the right

Solution

to find the measure of $\angle D C B$.

Step 1 Write and solve an equation
 to find the value of x.

$$
\begin{array}{rll}
(3 x-9)^{\circ} & = & \\
\text { Exterior Ang } \\
\text { Theorem } \\
x & = & \\
\text { Solve for } x .
\end{array}
$$

Step 2 Substitute \qquad for x in $3 x-9$ to find $m \angle D C B$. $3 x-9=3$. \qquad $-9=$ \qquad
The measure of $\angle D C B$ is \qquad .

COROLLARY TO THE TRIANGLE SUM THEOREM
The acute angles of a right triangle are \qquad .

$$
m \angle A+m \angle B=
$$

\qquad
\qquad

Ramps The front face of the wheelchair ramp shown forms a right triangle. The measure of one acute angle in the triangle is eight times the measure of the other. Find the measure of each acute angle.

Solution

First, sketch a diagram of the situation. Let the measure of the smaller acute angle be x°. Then the measure of the larger acute angle is \qquad .

Use the Corollary to the Triangle Sum Theorem to set up and solve an equation.
$x^{\circ}+$ \qquad $=$ \qquad Corollary to the Triangle Sum Theorem $x=$ \qquad Solve for x.

So, the measures of the acute angles are \qquad and \qquad .

- Checkpoint Complete the following exercises.

2. Triangle JKL has vertices $J(-2,-1), K(1,3)$, and $L(5,0)$. Classify it by its sides. Then determine if it is a right triangle.
3. Find the measure of $\angle 1$ in the diagram shown.

4. In Example 4, what is the measure of the obtuse angle formed between the ramp and a segment extending from the horizontal leg?

4.2 Apply Congruence and Triangles

(Vheckpoint In Exercises 1 and 2, use the diagram shown in which FGHJ \cong STUV.

1. Identify all pairs of congruent corresponding parts.

2. Find the value of x and find $m \angle G$.

Example 3 Show that figures are congruent

Maps If you cut the map in half along $\overline{P R}$, will the sections of the map be the same size and shape? Explain.

Solution

From the diagram, $\angle S \cong$ \qquad because all right angles are congruent. Also, by the Lines Perpendicular to a Transversal Theorem, $\overline{P Q} \|$. Then $\angle 1 \cong$ \qquad and $\angle 2 \cong$ \qquad by the
\qquad
\qquad . So, all pairs of corresponding angles
are \qquad .
The diagram shows $\overline{P Q} \cong$ \qquad and $\overline{Q R} \cong$ \qquad . By the $\quad, \overline{P R} \cong \overline{R P}$. All corresponding parts are \qquad , so $\triangle P Q R \cong$ \qquad .
, the two sections will be the same \qquad and \qquad .

Your Notes

THEOREM 4.3: THIRD ANGLES THEOREM

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also \qquad .

Example 4 Use the Third Angles Theorem

Find $m \angle V$.

Solution

$\angle S U T \cong \angle V U W$ by the \qquad .
The diagram shows that $\angle S T U \cong$ \qquad , so by the Third Angles Theorem, $\angle S \cong$ \qquad . By the Triangle Sum
Theorem, $m \angle S=$ \qquad = \qquad So, $m \angle S$
$=m \angle V=$ \qquad by the definition of congruent angles.

Example 5 Prove that triangles are congruent

Write a proof.
Given $\quad \overline{F H} \cong \overline{J H}, \overline{F G} \cong \overline{J G}$,
$\angle F H G \cong \angle J H G, \angle F G H \cong \angle J G H$
Prove $\triangle F G H \cong \triangle J G H$

Plan for Proof
a. Use the Reflexive Property to show \qquad .
b. Use the Third Angles Theorem to show \qquad .

Plan in Action

Statements

1. $\overline{F H} \cong \overline{J H}, \overline{F G} \cong \overline{J G}$
a. 2 . \qquad
2. $\angle F H G \cong \angle J H G$,
$\angle F G H \cong \angle J G H$
b. 4.
3. $\triangle F G H \cong \triangle J G H$

Reasons
1.
2. Reflexive Property of Congruence
3. \qquad
4. Third Angles Theorem
5. \qquad

Your Notes

THEOREM 4.4: PROPERTIES OF CONGRUENT TRIANGLES

Reflexive Property of Congruent Triangles
For any triangle $A B C, \triangle A B C \cong$ \qquad .

Symmetric Property of Congruent Triangles
If $\triangle A B C \cong \triangle D E F$, then

Transitive Property of Congruent Triangles
If $\triangle A B C \cong \triangle D E F$ and $\triangle D E F \cong \triangle J K L$, then

- Checkpoint Complete the following exercises.

3. In the diagram at the right, E is the midpoint of $\overline{A C}$ and $\overline{B D}$. Show that $\triangle A B E \cong \triangle C D E$.

4. In the diagram, what is the measure of $\angle D$?

5. By the definition of congruence, what additional information is needed to know that $\triangle A B E \cong \triangle D C E$ in Exercise 4?

4.3 Prove Triangles Congruent by SSS

Your Notes

Rewrite the Goal as an "I can" statement:

Goal - Use side lengths to prove triangles are congruent.

POSTULATE 19: SIDE-SIDE-SIDE (SSS) CONGRUENCE POSTULATE

If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.
If Side $\overline{A B} \cong$ \qquad , Side $\overline{B C} \cong$ \qquad , and

Side $\overline{C A} \cong$ \qquad ,
then $\triangle A B C \cong$ \qquad .

Example 1 Use the SSS Congruence Postulate

Write a proof.
Given $\overline{F J} \cong \overline{H J}$,
G is the midpoint of $\overline{F H}$.
Prove $\triangle F G J \cong \triangle H G J$

Proof It is given that $\overline{F J} \cong$ \qquad . Point G is the midpoint of $\overline{F H}$, so \qquad . By the Reflexive Property,
\qquad ,
$\overline{\triangle F G J \cong \triangle H G J}$.
(Vheckpoint Decide whether the congruence statement is true. Explain your reasoning.

1. $\triangle J K L \cong \triangle M K L$

Complete the vocab.

Your Notes

Example 2 Congruence in the coordinate plane
Determine whether $\triangle P Q R$ is congruent to the other triangles shown at the right.

Solution

By counting, $P Q=3$ and $Q R=5$. Use the distance formula to find $P R$.
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

By the SSS Congruence Postulate, any triangle with side lengths __, , and ___ will be congruent
to $\triangle P Q R$. The distance from R to S is \qquad . The distance from R to T is . The distance from S to T is
$\sqrt{\triangle P Q R \cong}=\sqrt{\square}$. So,

The distance from W to V is
$\sqrt{ }=\sqrt{\square}$. No side of
$\triangle P Q R$ has a length of $\sqrt{\square}$, so $\triangle P Q R \quad \triangle V W R$.

- Checkpoint Complete the following exercise.

3. \triangle DFG has vertices $D(-2,4), F(4,4)$, and $G(-2,2)$. $\triangle L M N$ has vertices $L(-3,-3), M(-3,3)$, and $N(-1,-3)$. Graph the triangles in the same coordinate plane and show that they are congruent.

stop and get the teacher's signature before you move on.

Your Notes

Example 3 Solve a real-world problem
Stability Explain why the table with the diagonal legs is stable, while the one without the diagonal legs can collapse.

Solution

The table with the diagonal legs forms triangles with \qquad side lengths. By the SSS Congruence
Postulate, these triangles \qquad , so the table is \qquad . The table without the diagonal legs is \qquad because there are many possible quadrilaterals with the given side lengths.
(veckpoint Determine whether the figure is stable. Explain your reasoning.

4.4 Prove Triangles Congruent by SAS and HL

Your Notes

Rewrite the Goal as an "I can" statement:

Goal - Use sides and angles to prove congruence.

VOCABULARY

Leg of a right triangle sense to you.
that make
Complete the vocab. with
definitions
or pictures

POSTULATE 20: SIDE-ANGLE-SIDE (SAS) CONGRUENCE POSTULATE

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

If Side $\overline{R S} \cong$ \qquad ,

Angle $\angle R \cong$ \qquad , and

Side $\overline{R T} \cong$ \qquad ,

then $\triangle R S T \cong$ \qquad .

Example 1 Use the SAS Congruence Postulate

Write a proof.

Given $\overline{J N} \cong \overline{L N}, \overline{K N} \cong \overline{M N}$
Prove $\triangle J K N \cong \triangle L M N$

Statements	Reasons
1. $\overline{J N} \cong$	1. Given
$\overline{K N} \cong$	
2. $\angle 1 \cong \angle 2$	2.
3. $\triangle J K N \cong \triangle L M N$	3.

Hypotenuse

Your Notes

Example 2 Use SAS and properties of shapes
In the diagram, $A B C D$ is a rectangle. What can you conclude about $\triangle A B C$ and $\triangle C D A$?

Solution

By the \qquad ,
$\angle B \cong \angle D$. Opposite sides of a rectangle are congruent, so \qquad and \qquad .
$\triangle A B C$ and $\triangle C D A$ are congruent by the \qquad
\qquad .

Checkpoint In the diagram, $\overline{A B}, \overline{C D}$, and $\overline{E F}$ pass through the center M of the circle. Also, $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$.

1. Prove that $\triangle D M Y \cong \triangle B M Y$.
2. What can you conclude about $\overline{A C}$ and $\overline{B D}$?

Stop and get the teacher's signature before you move on.

THEOREM 4.5: HYPOTENUSE-LEG CONGRUENCE THEOREM

If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second triangle, then the two triangles are \qquad .

Example 3 Use the Hypotenuse-Leg Theorem

Write a proof.

Given $\quad \overline{A C} \cong \overline{E C}$,
$\overline{A B} \perp \overline{B D}$,
$\overline{E D} \perp \overline{B D}$,
$\overline{A C}$ is a bisector of $\overline{B D}$.

Prove $\triangle A B C \cong \triangle E D C$

Statements		Reasons
1. $\overline{A C} \cong \overline{E C}$	1.	
2. $\overline{A B} \perp \overline{B D}$,	2.	

3. $\angle B$ and $\angle D$ are
4. $\triangle A B C$ and $\triangle E D C$ are
\qquad .
5. $\overline{A C}$ is a bisector of $\overline{B D}$.

L 6. $\overline{B C} \cong \overline{D C}$
7. $\triangle A B C \cong \triangle E D C$
6. Definition of segment bisector
7. \qquad

Your Notes

Example 4 Choose a postulate or theorem
Gate The entrance to a ranch has a rectangular gate as shown in the diagram. You know that $\triangle A F C \cong \triangle E F C$. What postulate or theorem can you use to
 conclude that $\triangle A B C \cong \triangle E D C$?

Solution

You are given that $A B D E$ is a rectangle, so $\angle B$ and $\angle D$ are \qquad . Because opposite sides of a rectangle
are \qquad $\overline{A B} \cong$ \qquad You are also given that
$\triangle A F C \cong \triangle E F C$, so $\overline{A C} \cong$ \qquad . The hypotenuse and a leg of each triangle is congruent.
You can use the \qquad to conclude that $\triangle A B C \cong \triangle E D C$.

Checkpoint Complete the following exercises.

3. Explain why a diagonal of a rectangle forms a pair of congruent triangles.
4. In Example 4, suppose it is given that $A B C F$ and EDCF are squares. What postulate or theorem can you use to conclude that $\triangle A B C \cong \triangle E D C$? Explain.

4.5
 Prove Triangles Congruent by ASA and AAS

Goal - Use two more methods to prove congruences.

VOCABULARY

Flow proof
definitions
or pictures
that make
sense to
you.

POSTULATE 21: ANGLE-SIDE-ANGLE (ASA) CONGRUENCE POSTULATE

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.
If Angle $\angle A \cong$ \qquad ,

Side $\overline{A C} \cong$ \qquad and
Angle
$\angle C \cong$ \qquad ,

then $\triangle A B C \cong$ \qquad .

THEOREM 4.6: ANGLE-ANGLE-SIDE (AAS) CONGRUENCE THEOREM

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.
If Angle $\angle A \cong$ \qquad ,
Angle $\angle C \cong$ \qquad , and
Side $\overline{B C} \cong$ \qquad ,
then $\triangle A B C \cong$ \qquad .
 -

Can the triangles be proven congruent with the information given in the diagram? If so, state the postulate or theorem you would use.
a.

b.

c.

Solution

a. There is not enough information to prove the triangles are congruent, because no \qquad are known to be congruent.
b. Two pairs of angles and a \qquad pair of sides are congruent. The triangles are congruent by the \qquad .
c. The vertical angles are congruent, so two pairs of angles and their \qquad are congruent. The triangles are congruent by the \qquad
\qquad .
\checkmark checkpoint Can $\triangle S T W$ and $\triangle V W T$ be proven congruent with the information given in the diagram? If so, state the postulate or theorem you would use.
1.

2.

Your Notes

Example 2 Write a flow proof
In the diagram, $\angle 1 \cong \angle 4$ and CF bisects $\angle A C E$. Write a flow proof to show $\triangle C B F \cong \triangle C D F$.

Solution

Given $\angle 1 \cong \angle 4, \overline{C F}$ bisects $\angle A C E$.
Prove $\triangle C B F \cong \triangle C D F$

Checkpoint Complete the following exercise.

3. In Example 2, suppose it is given that $\overline{C F}$ bisects $\angle A C E$ and $\angle B F D$. Write a flow proof to show $\triangle C B F \cong \triangle C D F$.

Your Notes

Example 3 Choose a postulate or theorem
Games You and a friend are trying to find a flag hidden in the woods. Your friend is standing 75 feet away from you. When facing each other, the angle from you to the flag is 72° and the angle from your friend to the flag is 53°. Is there enough information to locate the flag?

Solution

The locations of you, your friend, and the flag form a triangle. The measures of \qquad and an \qquad of the triangle are known.

By the \qquad , all triangles with these measures are congruent. So, the triangle formed is unique and the flag location is given by the \qquad
\qquad .

Checkpoint Complete the following exercise.

4. Theater You are working two spotlights for a play. Two actors are standing apart from each other on the end of the stage. The spotlights are located and pointed as shown in the diagram. Can one of the actors move without requiring the spotlight to move and without changing the distance between the other actor?

Goal - Use congruent triangles to prove corresponding parts congruent.
the vocab.
with
definitions
or pictures
that make
sense to
you.

Example 2 Use congruent triangles for measurement
Boats Use the following method to

When you cannot easily measure a length directly, you can make conclusions about the length indirectly, usually by calculations based on known lengths. find the distance between two docked boats, from point A to point B.

- Place a marker at D so that $\overline{A B} \perp \overline{B D}$.
- Find C, the midpoint of $\overline{B D}$.
- Locate the point E so that $\overline{B D} \perp \overline{D E}$ and A, C, and E are collinear.
- Explain how this plan allows you to find the distance.

Solution

Because $\overline{A B} \perp \overline{B D}$ and $\overline{B D} \perp \overline{D E}$,
\qquad and \qquad are congruent right
$\overline{\text { angles. Because } C}$ is the midpoint of $\overline{B D}$, \cong \qquad . The vertical angles
and are congruent. So,

$\triangle C B A \cong$ \qquad by the \qquad .
Then, because corresponding parts of congruent triangles are congruent, $\overline{B A}=$ \qquad . So, you can find the distance $A B$ between the boats by measuring \qquad .

(Checkpoint Complete the following exercises.

1. Explain how you can prove that $\overline{P R} \cong \overline{Q S}$.

2. In Example 2, does it matter how far away from point B you place a marker at point D? Explain.

Use the given information to write a plan for proof.
Given $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$
Prove $\triangle A B D \cong \triangle A C D$

Solution

In $\triangle A B D$ and $\triangle A C D$, you know that $\angle 1 \cong$ \qquad and $\overline{A D} \cong \overline{A D}$. If you can show that $\overline{B D} \cong \overline{C D}$, you can use the \qquad .
To prove that $\overline{B D} \cong \overline{C D}$, you can first prove that $\triangle B E D \cong$ \qquad . You are given $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4 . \overline{E D} \cong \overline{E D}$ by the Reflexive Property and $\angle B D E \cong$ \qquad by the Congruent Supplements
Theorem. You can use the \qquad to prove that $\triangle B E D \cong$ \qquad .
Plan for Proof Use the \qquad to
prove that $\triangle B E D \cong$ \qquad . Then state that $\overline{B D} \cong \overline{C D}$.
Use the \qquad to prove that $\triangle A B D \cong \triangle A C D$.

Checkpoint Use the given information to write a plan for proof.
3. Given $\overline{G H} \cong \overline{K J}, \overline{F G} \cong \overline{L K}$, $\angle F J G$ and $\angle L H K$ are rt. \angle. Prove $\triangle F J K \cong \triangle L H G$

Your Notes

Example 4 Prove a construction

Write a proof to verify that the construction for copying an obtuse angle is valid.

Solution

Add $\overline{B C}$ and $\overline{E F}$ to the diagram. In the construction, $\overline{A B}$, \qquad , \qquad , and are determined by the same compass setting, as are $\overline{B C}$ and \qquad . So, you can assume the following as given statements.

Given $\overline{A B} \cong$ \qquad ,$\overline{A C} \cong$ \qquad ,$\overline{B C} \cong$

\qquad

Prove $\angle D \cong$ \qquad
Plan Show that $\triangle C A B \cong$ \qquad , so you can conclude for that the corresponding parts $\angle D$ and \qquad are Proof congruent.

2. $\triangle C A B \cong$ \qquad 2. SSS Congruence Postulate
3. $\angle D \cong$ \qquad 3. Corresp. parts of \cong triangles are \cong.

\checkmark Checkpoint Complete the following exercise.

4. Write a paragraph proof to verify that the construction for bisecting a right angle is valid.

4.7 Use Isosceles and Equilateral Triangles

Goal - Use theorems about isosceles and equilateral triangles.

Complete
the vocab.
with
definitions
or pictures
that make
sense to
VOCABULARY

Legs

Vertex angle

Base

Base angles
you.

Rewrite the Goal as an "I can" statement:

Your Notes

The corollaries state that a triangle is equilateral if and only if it is equiangular.

COROLLARY TO THE BASE ANGLES THEOREM

If a triangle is equilateral, then it is \qquad .

COROLLARY TO THE CONVERSE OF BASE ANGLES THEOREM

If a triangle is equiangular, then it is \qquad .

Example 2 Find measures in a triangle

Find the measures of $\angle R, \angle S$, and $\angle T$.

Solution

The diagram shows that $\triangle R S T$ is
\qquad Therefore, by the Corollary to the Base Angles Theorem, $\triangle R S T$ is

\qquad . So, $m \angle R=m \angle S=m \angle T$.

$$
\begin{aligned}
3(m \angle R) & = & & \text { Triangle Sum Theorem } \\
m \angle R & = & & \text { Divide each side by } 3 .
\end{aligned}
$$

The measures of $\angle R, \angle \mathrm{~S}$, and $\angle \mathrm{T}$ are all \qquad .

Example 3 Use isosceles and equilateral triangles

Find the values of x and y in the diagram.

Solution

Step 1 Find the value of x. Because

You cannot use $\angle J$ to refer to $\angle L J M$ because three angles have J as their vertex.
$\triangle J K L$ is \qquad , it is also \qquad and
$\overline{K L} \cong$ \qquad . Therefore, $x=$ \qquad .

Step 2 Find the value of y. Because $\angle J M L \cong$ \qquad , $\overline{L M} \cong$ \qquad , and $\triangle L M J$ is isosceles. You know that $L J=$ \qquad .
$L M=\quad$ Definition of congruent segments
$2 y=$ \qquad Substitute 2y for LM and \qquad for LJ.
$y=$ \qquad Divide each side by 2.

Your Notes

Example 4 Solve a multi-step problem
Quilting The pattern at the right is present in a quilt.
a. Explain why $\triangle A D C$ is equilateral.
b. Show that $\triangle C B A \cong \triangle A D C$.

Solution

a. By the Base Angles Theorem, $\angle D A C \cong$ \qquad . So, $\triangle A D C$ is \qquad By the , $\triangle A D C$ is equilateral.
b. By the Base Angles Theorem, $\angle A B C \cong$ \qquad . So, $\triangle C B A \cong \triangle A D C$ by the .

Checkpoint Complete the following exercises.

1. Copy and complete the statement: If $\overline{F H} \cong \overline{F J}$, then \angle ? $\cong \angle$? .
2. Copy and complete the statement: If $\triangle F G K$ is equiangular and
 $F G=15$, then $G K=$? .

3. Use parts (a) and (b) in Example 4 to show that $m \angle B A D=120^{\circ}$.

Example 1 Identify transformations

Name the type of transformation demonstrated in each picture.
a.

b.

C.

in a vertical line

COORDINATE NOTATION FOR A TRANSLATION

You can describe a translation by the notation
$(x, y) \rightarrow(x+a, y+b)$
which shows that each point (x, y) of the unshaded figure is translated horizontally a units and vertically b units.

Example 2 Translate a figure in the coordinate plane
Figure $A B C D$ has the vertices $A(1,2), B(3,3), C(4,-1)$, and $D(1,-2)$. Sketch $A B C D$ and its image after the translation $(x, y) \rightarrow(x-4, y+2)$.

Solution

First draw $A B C D$. Find the translation of each vertex
by from its x-coordinate and to its y-coordinate. Then draw $A B C D$ and its image.

$$
\begin{aligned}
(x, y) & \rightarrow(x-4, y+2) \\
A(1,2) & \rightarrow \\
B(3,3) & \rightarrow \\
C(4,-1) & \rightarrow- \\
D(1,-2) & \rightarrow
\end{aligned}
$$

COORDINATE NOTATION FOR A REFLECTION

Reflection in the x-axis Reflection in the y-axis

Multiply y-coordinate by -1 .

$$
(x, y) \rightarrow(x,-y)
$$

Multiply x-coordinate by -1 .
$(x, y) \rightarrow(-x, y)$

Your Notes

Example 3 Reflect a figure in the x-axis
Shapes You are cutting figures out of paper. Use a reflection in the x-axis to draw the other half of the figure.

Solution

Multiply the \qquad of each vertex by -1 to find the corresponding vertex in the image. Then draw the image.

(x, y)	\rightarrow	
$(-1,0)$	\rightarrow	
$(1,1)$	\rightarrow	
$(2,4)$	\rightarrow	
$(3,1)$	\rightarrow	
$(7,0)$	\rightarrow	

You can check your results by looking to see if each original point and its image are the same distance from the \qquad .

Checkpoint Complete the following exercises.

1. Name the type of transformation shown.

2. Figure $F G H J$ has the vertices $F(0,2), G(2,3)$, $H(3,3)$, and $J(0,-2)$. Sketch FGHJ and its image after (a) the translation $(x, y) \rightarrow(x-3, y+1)$ and (b) a reflection in the y-axis.
teacher's signature before you move on.

Example 4 Identify a rotation
Graph $\overline{J K}$ and $\overline{L M}$. Tell whether $\overline{L M}$ is a rotation of $\overline{J K}$ about the origin. If so, give the angle and direction of rotation.
a. $J(3,1), K(1,4), L(-1,3), M(-4,1)$
b. $J(-2,1), K(-1,5), L(1,1), M(2,5)$

Solution

a.

$m \angle J O L$ \qquad $m \angle K O M$
b.

$m \angle J O L$ \qquad $m \angle K O M$
\qquad
\qquad

Checkpoint Graph $\overline{R S}$ and $\overline{T V}$. Tell whether $\overline{T V}$ is a rotation of $\overline{R S}$ about the origin. If so, give the angle of rotation.

Stop and get the teacher's signature before you move on.

Your Notes

Example 5 Verify congruence
The vertices of $\triangle P Q R$ are $P(2,2), Q(3,4)$, and $R(5,2)$. The notation $(x, y) \rightarrow(x+1, y-6)$ describes the translation of $\triangle P Q R$ to $\triangle X Y Z$. Show that $\triangle P Q R \cong \triangle X Y Z$ to verify that the translation is a congruence transformation.

Solution

S You can see that $P R=$ \qquad $=$ \qquad so $\overline{P R} \cong$ \qquad .

A Using the slopes, $\overline{P Q} \|$ \qquad and $\overline{Q R}$ \qquad . If you extend $\overline{P Q}$ and $\overline{X Z}$ to form $\angle V$, the Corresponding Angles Postulate gives you

\qquad $\cong \angle V$ and $\angle V \cong$ \qquad . Then,
\qquad by the Transitive Property of Congruence.

S Using the distance formula, $P Q=$ \qquad $=$ \qquad so $P Q \cong$ \qquad . So, $\triangle P Q R \cong \triangle X Y Z$ by the
\qquad -
\qquad

Because $\triangle P Q R \cong \triangle X Y Z$, the translation is a congruence transformation.

Checkpoint Complete the following exercise.

5. Show that $\triangle A B C \cong \triangle E D C$ to verify that the transformation is a congruence transformation.

