LESSON 8.5 Practice A
For use with pages 541–549

If you turn this in on time: do the odds.

If you turn this in late or

you are doing it over: do the evens.

Points J, K, L, and M are the vertices of a quadrilateral. Determine whether JKLM is a trapezoid.

Teacher Score:

- **1.** J(-1, -1), K(0, 3), L(3, 3), M(4, -1)
- **2.** J(-4, -2), K(-4, 3), L(2, 3), M(3, -5)

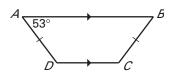
Find $m \ge B$, $m \ge C$, and $m \ge D$.

3.

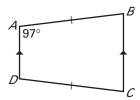
Student

How well

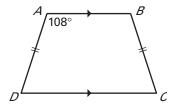
target:


A B C D F

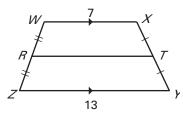
do you feel


you understand

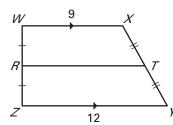
this learning


score:

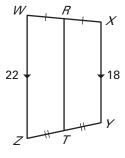
4



5.

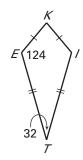


Find the length of the midsegment \overline{RT} .

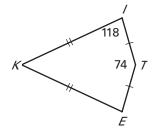

6.

7.

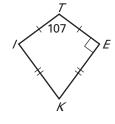
8.



Tell whether the statement is always, sometimes, or never true.

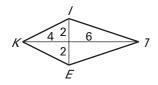

- **9.** A trapezoid is a parallelogram.
- **10.** The bases of a trapezoid are parallel.
- **11.** The base angles of an isosceles trapezoid are congruent.
- **12.** The legs of a trapezoid are congruent.

KITE is a kite. Find $m \ge K$.

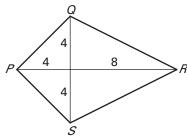

13.

14.

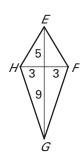
15.



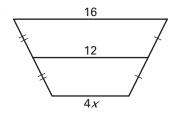
LESSON 8.5


Practice A continued For use with pages 541–549

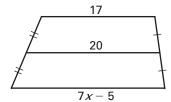
Use Theorem 8.18 and the Pythagorean Theorem to find the side lengths of the kite. Write the lengths in simplest radical form.


16.

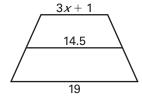
17.

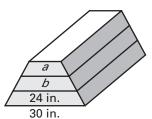


18.



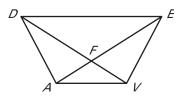
Find the value of x.


19.


20.

21.

22. Vaulting Box Three vaulting boxes used by a gymnastics team are stacked on top of each other as shown. The sides are in the shape of a trapezoid. Find the lengths of *a* and *b*.



23. Complete the proof.

GIVEN: $\overline{DE} \parallel \overline{AV}$,

 $\triangle DAV \cong \triangle EVA$

PROVE: *DAVE* is an isosceles trapezoid.

Statements	Reasons
1. $\overline{DE} \parallel \overline{AV}$	1 ?
2. <i>DAVE</i> is a trapezoid.	2?
3 ?	3. Given
4 ?	4. Corresponding parts of $\cong A$ are \cong .
5. <i>DAVE</i> is an isosceles trapezoid.	5 ?