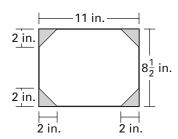
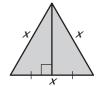

Challenge Practice For use with pages 48-56


- **1.** The sides of a square are doubled. How does the perimeter and area of the new square compare with the perimeter and area of the original square? *Justify* your answer.
- **2.** The length and width of a rectangle are doubled. How do the perimeter and area of the new rectangle compare with the perimeter and area of the original rectangle? *Justify* your answer.
- **3.** The figure at the right shows three squares. The area of square I is 25 square inches and the area of square II is 64 square inches. What is the perimeter and area of square III?


- **4.** The length of a rectangle is 16 centimeters. The perimeter of the rectangle must be at least 36 centimeters and not more than 64 centimeters. Find the interval for the width *w* of the rectangle.
- **5.** The width of a rectangle is 14 meters. The perimeter of the rectangle must be at least 100 meters and not more than 120 meters. Find the interval for the length ℓ of the rectangle.
- **6.** The length ℓ of a rectangle is t times its width w. The perimeter of the rectangle is 1200 meters.
 - **a.** Write the perimeter P of the rectangle in terms of w and t.
 - **b.** Copy and complete the table.

t	1	1.5	2	3	4	5
Width	?	?	?	?	?	?
Length	?	?	?	?	?	?
Area	?	?	?	?	?	?

- **c.** Describe the relationship among the width, length, and area of a rectangle that has a fixed perimeter. What dimensions result in a maximum area of the rectangle?
- 7. The four corners are cut from an $8\frac{1}{2}$ -inch-by-11-inch piece of paper as shown in the figure at the right. What is the perimeter of the remaining piece of paper?

8. Use the figure shown at the right and the Pythagorean Theorem to write a formula for the area *A* of an equilateral triangle with side *x*.

